plots a classified raster using tmap.
Usage
# S3 method for class 'class_cube'
plot(
x,
y,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
legend = NULL,
palette = "Spectral",
scale = 1,
max_cog_size = 1024L,
legend_position = "outside"
)Arguments
- x
Object of class "class_cube".
- y
Ignored.
- ...
Further specifications for plot.
- tile
Tile to be plotted.
- roi
Spatial extent to plot (see note)
- legend
Named vector that associates labels to colors.
- palette
A RColorBrewer or "cols4all" palette
- scale
Relative scale (0.4 to 1.0) of plot text
- max_cog_size
Maximum size of COG overviews (lines or columns)
- legend_position
Where to place the legend (default = "outside")
Value
A color map, where each pixel has the color associated to a label, as defined by the legend parameter.
Note
To see which color palettes are supported, please run cols4all::c4a_gui(). The following optional parameters are available to allow for detailed control over the plot output:
graticules_labels_size: size of coord labels (default = 0.8)legend_title_size: relative size of legend title (default = 1.0)legend_text_size: relative size of legend text (default = 1.0)legend_bg_color: color of legend background (default = "white")legend_bg_alpha: legend opacity (default = 0.5)
#' To define a roi use one of:
A path to a shapefile with polygons;
A
sfcorsfobject fromsfpackage;A
SpatExtentobject fromterrapackage;A named
vector("lon_min","lat_min","lon_max","lat_max") in WGS84;A named
vector("xmin","xmax","ymin","ymax") with XY coordinates.
Author
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label cube with the most likely class
label_cube <- sits_label_classification(
probs_cube,
output_dir = tempdir()
)
# plot the resulting classified image
plot(label_cube)
}