Package index
-
cerrado_2classes
- Samples of classes Cerrado and Pasture
-
hist(<probs_cube>)
- histogram of prob cubes
-
hist(<raster_cube>)
- histogram of data cubes
-
hist(<sits>)
- Histogram
-
hist(<uncertainty_cube>)
- Histogram uncertainty cubes
-
impute_linear()
- Replace NA values by linear interpolation
-
plot(<sits>)
- Plot time series and data cubes
-
plot(<class_cube>)
- Plot classified images
-
plot(<class_vector_cube>)
- Plot Segments
-
plot(<dem_cube>)
- Plot DEM cubes
-
plot(<geo_distances>)
- Make a kernel density plot of samples distances.
-
plot(<patterns>)
- Plot patterns that describe classes
-
plot(<predicted>)
- Plot time series predictions
-
plot(<probs_cube>)
- Plot probability cubes
-
plot(<probs_vector_cube>)
- Plot probability vector cubes
-
plot(<raster_cube>)
- Plot RGB data cubes
-
plot(<rfor_model>)
- Plot Random Forest model
-
plot(<sar_cube>)
- Plot SAR data cubes
-
plot(<sits_accuracy>)
- Plot confusion matrix
-
plot(<sits_cluster>)
- Plot a dendrogram cluster
-
plot(<som_clean_samples>)
- Plot SOM samples evaluated
-
plot(<som_evaluate_cluster>)
- Plot confusion between clusters
-
plot(<som_map>)
- Plot a SOM map
-
plot(<torch_model>)
- Plot Torch (deep learning) model
-
plot(<uncertainty_cube>)
- Plot uncertainty cubes
-
plot(<uncertainty_vector_cube>)
- Plot uncertainty vector cubes
-
plot(<variance_cube>)
- Plot variance cubes
-
plot(<vector_cube>)
- Plot RGB vector data cubes
-
plot(<xgb_model>)
- Plot XGB model
-
point_mt_6bands
- A time series sample with data from 2000 to 2016
-
samples_l8_rondonia_2bands
- Samples of Amazon tropical forest biome for deforestation analysis
-
samples_modis_ndvi
- Samples of nine classes for the state of Mato Grosso
-
sits-package
sits
- sits
-
sits_accuracy()
- Assess classification accuracy
-
sits_add_base_cube()
- Add base maps to a time series data cube
-
sits_apply()
- Apply a function on a set of time series
-
sits_as_sf()
- Return a sits_tibble or raster_cube as an sf object.
-
sits_as_stars()
- Convert a data cube into a stars object
-
sits_as_terra()
- Convert a data cube into a Spatial Raster object from terra
-
sits_bands()
`sits_bands<-`()
- Get the names of the bands
-
sits_bbox()
- Get the bounding box of the data
-
sits_classify()
- Classify time series or data cubes
-
sits_classify(<raster_cube>)
- Classify a regular raster cube
-
sits_classify(<vector_cube>)
- Classify a segmented data cube
-
sits_classify(<sits>)
- Classify a set of time series
-
sits_clean()
- Cleans a classified map using a local window
-
sits_cluster_clean()
- Removes labels that are minority in each cluster.
-
sits_cluster_dendro()
- Find clusters in time series samples
-
sits_cluster_frequency()
- Show label frequency in each cluster produced by dendrogram analysis
-
sits_colors()
- Function to retrieve sits color table
-
sits_colors_qgis()
- Function to save color table as QML style for data cube
-
sits_colors_reset()
- Function to reset sits color table
-
sits_colors_set()
- Function to set sits color table
-
sits_colors_show()
- Function to show colors in SITS
-
sits_combine_predictions()
- Estimate ensemble prediction based on list of probs cubes
-
sits_confidence_sampling()
- Suggest high confidence samples to increase the training set.
-
sits_config()
- Configure parameters for sits package
-
sits_config_show()
- Show current sits configuration
-
sits_config_user_file()
- Create a user configuration file.
-
sits_cube()
- Create data cubes from image collections
-
sits_cube(<local_cube>)
- Create sits cubes from cubes in flat files in a local
-
sits_cube(<results_cube>)
- Create a results cube from local files
-
sits_cube(<stac_cube>)
- Create data cubes from image collections accessible by STAC
-
sits_cube(<vector_cube>)
- Create a vector cube from local files
-
sits_cube_copy()
- Copy the images of a cube to a local directory
-
sits_factory_function()
- Create a closure for calling functions with and without data
-
sits_filter()
- Filter time series with smoothing filter
-
sits_formula_linear()
- Define a linear formula for classification models
-
sits_formula_logref()
- Define a loglinear formula for classification models
-
sits_geo_dist()
- Compute the minimum distances among samples and prediction points.
-
sits_get_class()
- Get values from classified maps
-
sits_get_data()
- Get time series from data cubes and cloud services
-
sits_get_data(<csv>)
- Get time series using CSV files
-
sits_get_data(<data.frame>)
- Get time series using sits objects
-
sits_get_data(<sf>)
- Get time series using sf objects
-
sits_get_data(<shp>)
- Get time series using shapefiles
-
sits_get_data(<sits>)
- Get time series using sits objects
-
sits_get_probs()
- Get values from probability maps
-
sits_impute()
- Replace NA values in time series with imputation function
-
sits_kfold_validate()
- Cross-validate time series samples
-
sits_label_classification()
- Build a labelled image from a probability cube
-
`sits_labels<-`(<class_cube>)
- Change the labels of a set of time series
-
`sits_labels<-`(<default>)
- Change the labels of a set of time series
-
`sits_labels<-`(<probs_cube>)
- Change the labels of a set of time series
-
`sits_labels<-`(<sits>)
- Change the labels of a set of time series
-
`sits_labels<-`()
- Change the labels of a set of time series
-
sits_labels()
- Get labels associated to a data set
-
sits_labels_summary()
- Inform label distribution of a set of time series
-
sits_lightgbm()
- Train light gradient boosting model
-
sits_lighttae()
- Train a model using Lightweight Temporal Self-Attention Encoder
-
sits_list_collections()
- List the cloud collections supported by sits
-
sits_lstm_fcn()
- Train a Long Short Term Memory Fully Convolutional Network
-
sits_merge()
- Merge two data sets (time series or cubes)
-
sits_mgrs_to_roi()
- Convert MGRS tile information to ROI in WGS84
-
sits_mixture_model()
- Multiple endmember spectral mixture analysis
-
sits_mlp()
- Train multi-layer perceptron models using torch
-
sits_model_export()
- Export classification models
-
sits_mosaic()
- Mosaic classified cubes
-
sits_patterns()
- Find temporal patterns associated to a set of time series
-
sits_pred_features()
- Obtain numerical values of predictors for time series samples
-
sits_pred_normalize()
- Normalize predictor values
-
sits_pred_references()
- Obtain categorical id and predictor labels for time series samples
-
sits_pred_sample()
- Obtain a fraction of the predictors data frame
-
sits_predictors()
- Obtain predictors for time series samples
-
sits_reclassify()
- Reclassify a classified cube
-
sits_reduce()
- Reduces a cube or samples from a summarization function
-
sits_reduce_imbalance()
- Reduce imbalance in a set of samples
-
sits_regularize()
- Build a regular data cube from an irregular one
-
sits_resnet()
- Train ResNet classification models
-
sits_rfor()
- Train random forest models
-
sits_roi_to_mgrs()
- Given a ROI, find MGRS tiles intersecting it.
-
sits_roi_to_tiles()
- Find tiles of a given ROI and Grid System
-
sits_run_examples()
- Informs if sits examples should run
-
sits_run_tests()
- Informs if sits tests should run
-
sits_sample()
- Sample a percentage of a time series
-
sits_sampling_design()
- Allocation of sample size to strata
-
sits_segment()
- Segment an image
-
sits_select()
- Filter a data set (tibble or cube) for bands, tiles, and dates
-
sits_sgolay()
- Filter time series with Savitzky-Golay filter
-
sits_slic()
- Segment an image using SLIC
-
sits_smooth()
- Smooth probability cubes with spatial predictors
-
sits_som_clean_samples()
- Cleans the samples based on SOM map information
-
sits_som_evaluate_cluster()
- Evaluate cluster
-
sits_som_map()
- Build a SOM for quality analysis of time series samples
-
sits_som_remove_samples()
- Evaluate cluster
-
sits_stats()
- Obtain statistics for all sample bands
-
sits_stratified_sampling()
- Allocation of sample size to strata
-
sits_svm()
- Train support vector machine models
-
sits_tae()
- Train a model using Temporal Self-Attention Encoder
-
sits_tempcnn()
- Train temporal convolutional neural network models
-
sits_texture()
- Apply a set of texture measures on a data cube.
-
sits_tiles_to_roi()
- Convert MGRS tile information to ROI in WGS84
-
sits_timeline()
- Get timeline of a cube or a set of time series
-
sits_timeseries_to_csv()
- Export a a full sits tibble to the CSV format
-
sits_to_csv()
- Export a sits tibble metadata to the CSV format
-
sits_to_xlsx()
- Save accuracy assessments as Excel files
-
sits_train()
- Train classification models
-
sits_tuning()
- Tuning machine learning models hyper-parameters
-
sits_tuning_hparams()
- Tuning machine learning models hyper-parameters
-
sits_uncertainty()
- Estimate classification uncertainty based on probs cube
-
sits_uncertainty_sampling()
- Suggest samples for enhancing classification accuracy
-
sits_validate()
- Validate time series samples
-
sits_variance()
- Calculate the variance of a probability cube
-
sits_view()
- View data cubes and samples in leaflet
-
sits_whittaker()
- Filter time series with whittaker filter
-
sits_xgboost()
- Train extreme gradient boosting models
-
summary(<class_cube>)
- Summarize data cubes
-
summary(<raster_cube>)
- Summarize data cubes
-
summary(<sits>)
- Summarize sits
-
summary(<sits_accuracy>)
- Summarize accuracy matrix for training data
-
summary(<sits_area_accuracy>)
- Summarize accuracy matrix for area data
-
summary(<variance_cube>)
- Summarize variance cubes