The algorithm searches for an optimal warping polynomial. The degree of smoothing depends on smoothing factor lambda (usually from 0.5 to 10.0). Use lambda = 0.5 for very slight smoothing and lambda = 5.0 for strong smoothing.
References
Francesco Vuolo, Wai-Tim Ng, Clement Atzberger, "Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data", Int Journal of Applied Earth Observation and Geoinformation, vol. 57, pg. 202-213, 2107.
Author
Rolf Simoes, rolfsimoes@gmail.com
Gilberto Camara, gilberto.camara@inpe.br
Felipe Carvalho, felipe.carvalho@inpe.br
Examples
if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit,
suffix = c("", ".WHIT")
)
# Plot the two points to see the smoothing effect
plot(point_ndvi)
}