plots a probability cube
Usage
# S3 method for class 'probs_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
labels = NULL,
palette = "YlGn",
rev = FALSE,
quantile = NULL,
scale = 1,
max_cog_size = 512L,
legend_position = "outside",
legend_title = "probs"
)
Arguments
- x
Object of class "probs_cube".
- ...
Further specifications for plot.
- tile
Tile to be plotted.
- roi
Spatial extent to plot in WGS 84 - named vector (see notes below)
- labels
Labels to plot.
- palette
RColorBrewer palette
- rev
Reverse order of colors in palette?
- quantile
Minimum quantile to plot
- scale
Scale to plot map (0.4 to 1.0)
- max_cog_size
Maximum size of COG overviews (lines or columns)
- legend_position
Where to place the legend (default = "outside")
- legend_title
Title of legend (default = "probs")
Value
A plot containing probabilities associated to each class for each pixel.
To define a roi
use one of:
A path to a shapefile with polygons;
A
sfc
orsf
object fromsf
package;A
SpatExtent
object fromterra
package;A named
vector
("lon_min"
,"lat_min"
,"lon_max"
,"lat_max"
) in WGS84;A named
vector
("xmin"
,"xmax"
,"ymin"
,"ymax"
) with XY coordinates.
Defining a region of interest using SpatExtent
or XY values not
in WGS84 requires the crs
parameter to be specified.
sits_regularize()
function will crop the images
that contain the region of interest().
Author
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the resulting probability cube
plot(probs_cube)
}