Given a set of lat/long locations and a classified cube, retrieve the class of each point. This function is useful to obtain values from classified cubes for accuracy estimates.
Usage
sits_get_class(cube, samples)
# Default S3 method
sits_get_class(cube, samples)
# S3 method for class 'csv'
sits_get_class(cube, samples)
# S3 method for class 'shp'
sits_get_class(cube, samples)
# S3 method for class 'sf'
sits_get_class(cube, samples)
# S3 method for class 'sits'
sits_get_class(cube, samples)
# S3 method for class 'data.frame'
sits_get_class(cube, samples)
Note
There are four ways of specifying data to be retrieved using the
samples
parameter:
(a) CSV file: a CSV file with columns longitude
, latitude
;
(b) SHP file: a shapefile in POINT geometry;
(c) sits object: A sits tibble;
(d) sf object: An link[sf]{sf}
object with POINT or geometry;
(e) data.frame: A data.frame with longitude
and latitude
.
Author
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(
bayes_cube,
output_dir = tempdir()
)
# obtain the a set of points for sampling
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",
package = "sits"
)
# get the classification values for a selected set of locations
labels_samples <- sits_get_class(label_cube, ground_truth)
}