plots a uncertainty cube
Usage
# S3 method for class 'uncertainty_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
palette = "RdYlGn",
rev = TRUE,
scale = 1,
first_quantile = 0.02,
last_quantile = 0.98,
max_cog_size = 1024L,
legend_position = "inside"
)
Arguments
- x
Object of class "probs_image".
- ...
Further specifications for plot.
- tile
Tiles to be plotted.
- roi
Spatial extent to plot in WGS 84 - named vector with either (lon_min, lon_max, lat_min, lat_max) or (xmin, xmax, ymin, ymax)
- palette
An RColorBrewer palette
- rev
Reverse the color order in the palette?
- scale
Scale to plot map (0.4 to 1.0)
- first_quantile
First quantile for stretching images
- last_quantile
Last quantile for stretching images
- max_cog_size
Maximum size of COG overviews (lines or columns)
- legend_position
Where to place the legend (default = "inside")
Note
The following optional parameters are available to allow for detailed control over the plot output:
graticules_labels_size
: size of coord labels (default = 0.7)legend_title_size
: relative size of legend title (default = 1.0)legend_text_size
: relative size of legend text (default = 1.0)legend_bg_color
: color of legend background (default = "white")legend_bg_alpha
: legend opacity (default = 0.5)
Author
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# calculate uncertainty
uncert_cube <- sits_uncertainty(probs_cube, output_dir = tempdir())
# plot the resulting uncertainty cube
plot(uncert_cube)
}