Plots a probability vector cube, which result from
first running a segmentation sits_segment
and then
running a machine learning classification model. The result is
a set of polygons, each with an assigned probability of belonging
to a specific class.
Usage
# S3 method for class 'probs_vector_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
labels = NULL,
palette = "YlGn",
rev = FALSE,
scale = 1,
legend_position = "outside"
)
Arguments
- x
Object of class "probs_vector_cube".
- ...
Further specifications for plot.
- tile
Tile to be plotted.
- labels
Labels to plot
- palette
RColorBrewer palette
- rev
Reverse order of colors in palette?
- scale
Scale to plot map (0.4 to 1.0)
- legend_position
Where to place the legend (default = "outside")
Author
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# segment the image
segments <- sits_segment(
cube = cube,
seg_fn = sits_slic(
step = 5,
compactness = 1,
dist_fun = "euclidean",
avg_fun = "median",
iter = 20,
minarea = 10,
verbose = FALSE
),
output_dir = tempdir()
)
# classify a data cube
probs_vector_cube <- sits_classify(
data = segments,
ml_model = rfor_model,
output_dir = tempdir()
)
# plot the resulting probability cube
plot(probs_vector_cube)
}