Plots a probability vector cube, which result from
first running a segmentation sits_segment and then
running a machine learning classification model. The result is
a set of polygons, each with an assigned probability of belonging
to a specific class.
Usage
# S3 method for class 'probs_vector_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
labels = NULL,
palette = "YlGn",
rev = FALSE,
scale = 1,
legend_position = "outside"
)Arguments
- x
Object of class "probs_vector_cube".
- ...
Further specifications for plot.
- tile
Tile to be plotted.
- roi
Region of interest (see notes below).
- labels
Labels to plot
- palette
RColorBrewer or "cols4all" palette
- rev
Reverse order of colors in palette?
- scale
Scale to plot map (0.4 to 1.0)
- legend_position
Where to place the legend (default = "outside")
Note
To see which color palettes are supported, please run cols4all::c4a_gui().
To define a roi use one of:
A path to a shapefile with polygons;
A
sfcorsfobject fromsfpackage;A
SpatExtentobject fromterrapackage;A named
vector("lon_min","lat_min","lon_max","lat_max") in WGS84;A named
vector("xmin","xmax","ymin","ymax") with XY coordinates.
Author
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# segment the image
segments <- sits_segment(
cube = cube,
seg_fn = sits_snic(
grid_seeding = "diamond",
spacing = 7,
compactness = 0.5,
padding = 0
),
output_dir = tempdir()
)
# classify a data cube
probs_vector_cube <- sits_classify(
data = segments,
ml_model = rfor_model,
output_dir = tempdir()
)
# plot the resulting probability cube
plot(probs_vector_cube)
}