Skip to contents

Use a TempCNN algorithm to classify data, which has two stages: a 1D CNN and a multi-layer perceptron. Users can define the depth of the 1D network, as well as the number of perceptron layers.

Usage

sits_tempcnn(
  samples = NULL,
  samples_validation = NULL,
  cnn_layers = c(64L, 64L, 64L),
  cnn_kernels = c(5L, 5L, 5L),
  cnn_dropout_rates = c(0.2, 0.2, 0.2),
  dense_layer_nodes = 256L,
  dense_layer_dropout_rate = 0.5,
  epochs = 150L,
  batch_size = 64L,
  validation_split = 0.2,
  optimizer = torch::optim_adamw,
  opt_hparams = list(lr = 5e-04, eps = 1e-08, weight_decay = 1e-06),
  lr_decay_epochs = 1L,
  lr_decay_rate = 0.95,
  patience = 20L,
  min_delta = 0.01,
  seed = NULL,
  verbose = FALSE
)

Arguments

samples

Time series with the training samples.

samples_validation

Time series with the validation samples. if the samples_validation parameter is provided, the validation_split parameter is ignored.

cnn_layers

Number of 1D convolutional filters per layer

cnn_kernels

Size of the 1D convolutional kernels.

cnn_dropout_rates

Dropout rates for 1D convolutional filters.

dense_layer_nodes

Number of nodes in the dense layer.

dense_layer_dropout_rate

Dropout rate (0,1) for the dense layer.

epochs

Number of iterations to train the model.

batch_size

Number of samples per gradient update.

validation_split

Fraction of training data to be used for validation.

optimizer

Optimizer function to be used.

opt_hparams

Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term added to the denominator to improve numerical stability. weight_decay: L2 regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate

Decay factor for reducing learning rate.

patience

Number of epochs without improvements until training stops.

min_delta

Minimum improvement in loss function to reset the patience counter.

seed

Seed for random values.

verbose

Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Note

sits provides a set of default values for all classification models. These settings have been chosen based on testing by the authors. Nevertheless, users can control all parameters for each model. Novice users can rely on the default values, while experienced ones can fine-tune deep learning models using sits_tuning.

This function is based on the paper by Charlotte Pelletier referenced below. If you use this method, please cite the original tempCNN paper.

The torch version is based on the code made available by the BreizhCrops team: Marc Russwurm, Charlotte Pelletier, Marco Korner, Maximilian Zollner. The original python code is available at the website https://github.com/dl4sits/BreizhCrops. This code is licensed as GPL-3.

References

Charlotte Pelletier, Geoffrey Webb and François Petitjean, "Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series", Remote Sensing, 11,523, 2019. doi:10.3390/rs11050523 .

Author

Charlotte Pelletier, charlotte.pelletier@univ-ubs.fr

Gilberto Camara, gilberto.camara@inpe.br

Rolf Simoes, rolfsimoes@gmail.com

Felipe Souza, lipecaso@gmail.com

Examples

if (sits_run_examples()) {
    # create a TempCNN model
    torch_model <- sits_train(
        samples_modis_ndvi,
        sits_tempcnn(epochs = 20, verbose = TRUE)
    )
    # plot the model
    plot(torch_model)
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6.1",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = torch_model, output_dir = tempdir()
    )
    # plot the probability cube
    plot(probs_cube)
    # smooth the probability cube using Bayesian statistics
    bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
    # plot the smoothed cube
    plot(bayes_cube)
    # label the probability cube
    label_cube <- sits_label_classification(
        bayes_cube,
        output_dir = tempdir()
    )
    # plot the labelled cube
    plot(label_cube)
}