References

[1]
L. De Simone and P. Gennari, “Earth observations for official crop statistics in the context of scarcity of in-situ data,” Statistical Journal of the IAOS, vol. 38, no. 3, pp. 1009–1019, 2022, doi: 10.3233/SJI-220054.
[2]
L. De Simone, W. Ouellette, and P. Gennari, “Operational Use of EO Data for National Land Cover Official Statistics in Lesotho,” Remote Sensing, vol. 14, no. 14, p. 3294, 2022, doi: 10.3390/rs14143294.
[3]
C. E. Woodcock, T. R. Loveland, M. Herold, and M. E. Bauer, “Transitioning from change detection to monitoring with remote sensing: A paradigm shift,” Remote Sensing of Environment, vol. 238, p. 111558, 2020, doi: 10.1016/j.rse.2019.111558.
[4]
A. Di Gregorio, “Land Cover Classification System - Classification concepts Software version 3,” FAO, 2016.
[5]
A. J. Comber, R. A. Wadsworth, and P. F. Fisher, “Using semantics to clarify the conceptual confusion between land cover and land use: The example of forest,” Journal of Land Use Science, vol. 3, no. 2–3, pp. 185–198, 2008.
[6]
M. Appel and E. Pebesma, “On-Demand Processing of Data Cubes from Satellite Image Collections with the gdalcubes Library,” Data, vol. 4, no. 3, 2019, doi: 10.3390/data4030092.
[7]
K. R. Ferreira et al., “Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products,” Remote Sensing, vol. 12, no. 24, p. 4033, 2020, doi: 10.3390/rs12244033.
[8]
Q. Xie et al., “Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 80, pp. 187–195, 2019, doi: 10.1016/j.jag.2019.04.019.
[9]
Y. Sun, Q. Qin, H. Ren, T. Zhang, and S. Chen, “Red-Edge Band Vegetation Indices for Leaf Area Index Estimation From Sentinel-2/MSI Imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 2, pp. 826–840, 2020, doi: 10.1109/TGRS.2019.2940826.
[10]
M. Chaves, M. Picoli, and I. Sanches, “Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review,” Remote Sensing, vol. 12, no. 18, p. 3062, 2020, doi: 10.3390/rs12183062.
[11]
D. C. Nepstad et al., “Large-scale impoverishment of Amazonian forests by logging and fire,” Nature, vol. 398, no. 6727, pp. 505–508, 1999, doi: 10.1038/19066.
[12]
Y. Gao, M. Skutsch, J. Paneque-Gálvez, and A. Ghilardi, “Remote sensing of forest degradation: A review,” Environmental Research Letters, vol. 15, no. 10, p. 103001, 2020, doi: 10.1088/1748-9326/abaad7.
[13]
D. A. Roberts, M. O. Smith, and J. B. Adams, “Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data,” Remote Sensing of Environment, vol. 44, no. 2, pp. 255–269, 1993, doi: 10.1016/0034-4257(93)90020-X.
[14]
Y. E. Shimabukuro and F. J. Ponzoni, Spectral Mixture for Remote Sensing: Linear Model and Applications. Cham: Springer International Publishing, 2019.
[15]
V. Franc, V. Hlaváč, and M. Navara, “Sequential Coordinate-Wise Algorithm for the Non-negative Least Squares Problem,” in Computer Analysis of Images and Patterns, 2005, pp. 407–414, doi: 10.1007/11556121_50.
[16]
D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, and R. O. Green, “Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models,” Remote Sensing of Environment, vol. 65, no. 3, pp. 267–279, 1998, doi: 10.1016/S0034-4257(98)00037-6.
[17]
M. A. Cochrane and C. Souza, “Linear mixture model classification of burned forests in the Eastern Amazon,” International Journal of Remote Sensing, vol. 19, no. 17, pp. 3433–3440, 1998, doi: 10.1080/014311698214109.
[18]
C. M. Souza Jr, D. A. Roberts, and M. A. Cochrane, “Combining spectral and spatial information to map canopy damage from selective logging and forest fires,” Remote Sensing of Environment, vol. 98, no. 2, pp. 329–343, 2005, doi: 10.1016/j.rse.2005.07.013.
[19]
E. L. Bullock, C. E. Woodcock, and C. E. Holden, “Improved change monitoring using an ensemble of time series algorithms,” Remote Sensing of Environment, vol. 238, p. 111165, 2020, doi: 10.1016/j.rse.2019.04.018.
[20]
S. Chen et al., “Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis,” Remote Sensing of Environment, vol. 265, p. 112648, 2021, doi: 10.1016/j.rse.2021.112648.
[21]
M. Halabisky, L. M. Moskal, A. Gillespie, and M. Hannam, “Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011),” Remote Sensing of Environment, vol. 177, pp. 171–183, 2016, doi: 10.1016/j.rse.2016.02.040.
[22]
C. Wu and A. T. Murray, “Estimating impervious surface distribution by spectral mixture analysis,” Remote sensing of Environment, vol. 84, no. 4, pp. 493–505, 2003.
[23]
H. Wickham and G. Grolemund, R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media, Inc., 2017.
[24]
V. Maus, G. Câmara, M. Appel, and E. Pebesma, dtwSat: Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis in R,” Journal of Statistical Software, vol. 88, no. 5, pp. 1–31, 2019, doi: 10.18637/jss.v088.i05.
[25]
H. Meyer and E. Pebesma, “Machine learning-based global maps of ecological variables and the challenge of assessing them,” Nature Communications, vol. 13, no. 1, p. 2208, 2022, doi: 10.1038/s41467-022-29838-9.
[26]
E. F. Lambin and M. Linderman, “Time series of remote sensing data for land change science,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 7, pp. 1926–1928, 2006.
[27]
P. M. Atkinson, C. Jeganathan, J. Dash, and C. Atzberger, “Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology,” Remote Sensing of Environment, vol. 123, pp. 400–417, 2012.
[28]
J. Zhou, L. Jia, M. Menenti, and B. Gorte, “On the performance of remote sensing time series reconstruction methods: A spatial comparison,” Remote Sensing of Environment, vol. 187, pp. 367–384, 2016.
[29]
J. Chen, Per. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, “A simple method for reconstructing a high-quality NDVI time-series data set based on the SavitzkyGolay filter,” Remote Sensing of Environment, vol. 91, no. 3, pp. 332–344, 2004, doi: 10.1016/j.rse.2004.03.014.
[30]
C. Atzberger and P. H. Eilers, “Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements,” International Journal of Remote Sensing, vol. 32, no. 13, pp. 3689–3709, 2011.
[31]
A. E. Maxwell, T. A. Warner, and F. Fang, “Implementation of machine-learning classification in remote sensing: An applied review,” International Journal of Remote Sensing, vol. 39, no. 9, pp. 2784–2817, 2018.
[32]
B. Frenay and M. Verleysen, “Classification in the Presence of Label Noise: A Survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 845–869, 2014, doi: 10.1109/TNNLS.2013.2292894.
[33]
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Data Mining, Inference, and Prediction. New York: Springer, 2009.
[34]
A. M. J.-C. Wadoux, G. B. M. Heuvelink, S. de Bruin, and D. J. Brus, “Spatial cross-validation is not the right way to evaluate map accuracy,” Ecological Modelling, vol. 457, p. 109692, 2021, doi: 10.1016/j.ecolmodel.2021.109692.
[35]
E. Keogh, J. Lin, and W. Truppel, “Clustering of time series subsequences is meaningless: Implications for previous and future research,” in Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, 2003, pp. 115–122.
[36]
F. Petitjean, J. Inglada, and P. Gancarski, “Satellite Image Time Series Analysis Under Time Warping,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 8, pp. 3081–3095, 2012, doi: 10.1109/TGRS.2011.2179050.
[37]
V. Maus, G. Camara, R. Cartaxo, A. Sanchez, F. M. Ramos, and G. R. Queiroz, “A Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 8, pp. 3729–3739, 2016, doi: 10.1109/JSTARS.2016.2517118.
[38]
J. H. Ward, “Hierarchical grouping to optimize an objective function,” Journal of the American statistical association, vol. 58, no. 301, pp. 236–244, 1963.
[39]
W. M. Rand, “Objective Criteria for the Evaluation of Clustering Methods,” Journal of the American Statistical Association, vol. 66, no. 336, pp. 846–850, 1971, doi: 10.1080/01621459.1971.10482356.
[40]
T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990, doi: 10.1109/5.58325.
[41]
L. A. Santos, K. R. Ferreira, G. Camara, M. C. A. Picoli, and R. E. Simoes, “Quality control and class noise reduction of satellite image time series,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 177, pp. 75–88, 2021, doi: 10.1016/j.isprsjprs.2021.04.014.
[42]
R. Wehrens and J. Kruisselbrink, “Flexible Self-Organizing Maps in kohonen 3.0,” Journal of Statistical Software, vol. 87, no. 1, pp. 1–18, 2018, doi: 10.18637/jss.v087.i07.
[43]
D. Berndt and J. Clifford, “Using Dynamic Time Warping to Find Patterns in Time Series,” 1994.
[44]
V. Maus, G. Camara, R. Cartaxo, F. M. Ramos, A. Sanchez, and G. Q. Ribeiro, “Open boundary dynamic time warping for satellite image time series classification,” in 2015 IEEE international geoscience and remote sensing symposium (IGARSS), 2015, pp. 3349–3352, doi: 10.1109/IGARSS.2015.7326536.
[45]
L. A. Santos, K. Ferreira, M. Picoli, G. Camara, R. Zurita-Milla, and E.-W. Augustijn, “Identifying Spatiotemporal Patterns in Land Use and Cover Samples from Satellite Image Time Series,” Remote Sensing, vol. 13, no. 5, p. 974, 2021, doi: 10.3390/rs13050974.
[46]
J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” Journal of Big Data, vol. 6, no. 1, p. 27, 2019, doi: 10.1186/s40537-019-0192-5.
[47]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, no. 1, pp. 321–357, 2002.
[48]
K. Janowicz, S. Scheider, T. Pehle, and G. Hart, “Geospatial semantics and linked spatiotemporal data – Past, present, and future,” Semantic Web, vol. 3, no. 4, pp. 321–332, 2012, doi: 10.3233/SW-2012-0077.
[49]
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[50]
M. Picoli et al., “Big earth observation time series analysis for monitoring Brazilian agriculture,” ISPRS journal of photogrammetry and remote sensing, vol. 145, pp. 328–339, 2018, doi: 10.1016/j.isprsjprs.2018.08.007.
[51]
C. Pelletier, S. Valero, J. Inglada, N. Champion, and G. Dedieu, “Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas,” Remote Sensing of Environment, vol. 187, pp. 156–168, 2016, doi: 10.1016/j.rse.2016.10.010.
[52]
J. S. Wright et al., “Rainforest-initiated wet season onset over the southern Amazon,” Proceedings of the National Academy of Sciences, 2017, doi: 10.1073/pnas.1621516114.
[53]
C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273–297, 1995.
[54]
G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R. New York, EUA: Springer, 2013.
[55]
G. Mountrakis, J. Im, and C. Ogole, “Support vector machines in remote sensing: A review,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247–259, 2011.
[56]
C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines,” ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3, p. 27, 2011.
[57]
T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.
[58]
H. Jafarzadeh, M. Mahdianpari, E. Gill, F. Mohammadimanesh, and S. Homayouni, “Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation,” Remote Sensing, vol. 13, no. 21, p. 4405, 2021, doi: 10.3390/rs13214405.
[59]
S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR, vol. abs/1609.04747, 2016.
[60]
L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization Methods for Large-Scale Machine Learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018, doi: 10.1137/16M1080173.
[61]
R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers,” in Proceedings of the 38th International Conference on Machine Learning, 2021, pp. 9367–9376.
[62]
D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, 2017, doi: 10.48550/arXiv.1412.6980.
[63]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.
[64]
Z. Wang, W. Yan, and T. Oates, “Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline,” 2017.
[65]
C. Pelletier, G. I. Webb, and F. Petitjean, “Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series,” Remote Sensing, vol. 11, no. 5, 2019.
[66]
M. Russwurm and M. Korner, “Multi-temporal land cover classification with sequential recurrent encoders,” ISPRS International Journal of Geo-Information, vol. 7, no. 4, p. 129, 2018.
[67]
R. Simoes et al., “Satellite Image Time Series Analysis for Big Earth Observation Data,” Remote Sensing, vol. 13, no. 13, p. 2428, 2021, doi: 10.3390/rs13132428.
[68]
M. Rußwurm, C. Pelletier, M. Zollner, S. Lefèvre, and M. Körner, BreizhCrops: A Time Series Dataset for Crop Type Mapping,” 2020.
[69]
A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems, 2017, vol. 30.
[70]
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” arXiv, 2019, doi: 10.48550/arXiv.1810.04805.
[71]
T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, 2020, doi: 10.48550/arXiv.2005.14165.
[72]
V. Garnot, L. Landrieu, S. Giordano, and N. Chehata, “Satellite Image Time Series Classification With Pixel-Set Encoders and Temporal Self-Attention,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 12322–12331, doi: 10.1109/CVPR42600.2020.01234.
[73]
V. S. F. Garnot and L. Landrieu, “Lightweight Temporal Self-attention for Classifying Satellite Images Time Series,” in Advanced Analytics and Learning on Temporal Data, 2020, pp. 171–181, doi: 10.1007/978-3-030-65742-0_12.
[74]
Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,” arXiv:1206.5533 [cs], 2012.
[75]
J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305, 2012.
[76]
A. Defazio and S. Jelassi, “Adaptivity without Compromise: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization.” arXiv, 2021, doi: 10.48550/arXiv.2101.11075.
[77]
M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adaptive Methods for Nonconvex Optimization,” in Advances in Neural Information Processing Systems, 2018, vol. 31.
[78]
M. C. A. Picoli et al., CBERS data cube: A powerful technology for mapping and monitoring Brazilian biomes.” in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, vol. V–3–2020, pp. 533–539, doi: 10.5194/isprs-annals-V-3-2020-533-2020.
[79]
R. Simoes et al., “Land use and cover maps for Mato Grosso State in Brazil from 2001 to 2017,” Scientific Data, vol. 7, no. 1, p. 34, 2020, doi: 10.1038/s41597-020-0371-4.
[80]
X. Huang, Q. Lu, L. Zhang, and A. Plaza, “New postprocessing methods for remote sensing image classification: A systematic study,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 11, pp. 7140–7159, 2014.
[81]
K. Schindler, “An overview and comparison of smooth labeling methods for land-cover classification,” IEEE transactions on geoscience and remote sensing, vol. 50, no. 11, pp. 4534–4545, 2012.
[82]
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, Third Edition. CRC Press, 2014.
[83]
P. Olofsson, G. M. Foody, M. Herold, S. V. Stehman, C. E. Woodcock, and M. A. Wulder, “Good practices for estimating area and assessing accuracy of land change,” Remote Sensing of Environment, vol. 148, pp. 42–57, 2014.
[84]
D. S. Alves, M. I. S. Escada, J. L. G. Pereira, and C. de Albuquerque Linhares, “Land use intensification and abandonment in Rondônia, Brazilian Amazônia,” International Journal of Remote Sensing, vol. 24, no. 4, pp. 899–903, 2003, doi: 10.1080/0143116021000015807.
[85]
W. G. Cochran, Sampling techniques. john wiley & sons, 1977.
[86]
P. Olofsson, G. M. Foody, S. V. Stehman, and C. E. Woodcock, “Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation,” Remote Sensing of Environment, vol. 129, pp. 122–131, 2013, doi: 10.1016/j.rse.2012.10.031.
[87]
G. L. Murphy, The Big Book of Concepts. Cambridge, MA, USA: Bradford Books, 2002.
[88]
R. Monarch, Human-in-the-Loop Machine Learning. Shelter Island, NY: Manning Publications, 2021.
[89]
M. M. Crawford, D. Tuia, and H. L. Yang, “Active Learning: Any Value for Classification of Remotely Sensed Data?” Proceedings of the IEEE, vol. 101, no. 3, pp. 593–608, 2013, doi: 10.1109/JPROC.2012.2231951.
[90]
P. M. Fearnside, “Brazil’s Samuel Dam: Lessons for Hydroelectric Development Policy and the Environment in Amazonia,” Environmental Management, vol. 35, no. 1, pp. 1–19, 2005, doi: 10.1007/s00267-004-0100-3.
[91]
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, SLIC Superpixels Compared to State-of-the-Art Superpixel Methods,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, 2012, doi: 10.1109/TPAMI.2012.120.
[92]
J. Nowosad and T. F. Stepinski, “Extended SLIC superpixels algorithm for applications to non-imagery geospatial rasters,” International Journal of Applied Earth Observation and Geoinformation, vol. 112, p. 102935, 2022, doi: 10.1016/j.jag.2022.102935.
[93]
H.-G. Drost, “Philentropy: Information Theory and Distance Quantification with R,” Journal of Open Source Software, vol. 3, no. 26, p. 765, 2018, doi: 10.21105/joss.00765.
[94]
M. Herold, R. Hubald, and A. Di Gregorio, “Translating and evaluating land cover legends using the UN Land Cover Classification System (LCCS),” GOFC-GOLD Florence, Italy, 2009.
[95]
G. Ke et al., “Lightgbm: A highly efficient gradient boosting decision tree,” in Advances in neural information processing systems, 2017, pp. 3146–3154.